Optimal Shape Design of Gravity Dams Based on a Hybrid Meta-heruristic Method and Weighted Least Squares Support Vector Machine

نویسندگان

  • J. Salajegheh
  • S. Khosravi
چکیده

A hybrid meta-heuristic optimization method is introduced to efficiently find the optimal shape of concrete gravity dams including dam-water-foundation rock interaction subjected to earthquake loading. The hybrid meta-heuristic optimization method is based on a hybrid of gravitational search algorithm (GSA) and particle swarm optimization (PSO), which is called GSA-PSO. The operation of GSA-PSO includes three phases. In the first phase, a preliminary optimization is accomplished using GSA as local search. In the second phase, an optimal initial swarm is produced using the optimum result of GSA. Finally, PSO is employed to find the optimum design using the optimal initial swarm. In order to reduce the computational cost of dam analysis subject to earthquake loading, weighted least squares support vector machine (WLS-SVM) is employed to accurately predict dynamic responses of gravity dams. Numerical results demonstrate the high performance of the hybrid meta-heuristic optimization for optimal shape design of concrete gravity dams. The solutions obtained by GSA-PSO are compared with those of GSA and PSO. It is revealed that GSA-PSO converges to a superior solution compared to GSA and PSO, and has a lower computation cost. Received: 5 August 2011, Accepted: 28 December 2011

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OPTIMAL SHAPE DESIGN OF GRAVITY DAMS BASED ON A HYBRID META-HERURISTIC METHOD AND WEIGHTED LEAST SQUARES SUPPORT VECTOR MACHINE

A hybrid meta-heuristic optimization method is introduced to efficiently find the optimal shape of concrete gravity dams including dam-water-foundation rock interaction subjected to earthquake loading. The hybrid meta-heuristic optimization method is based on a hybrid of gravitational search algorithm (GSA) and particle swarm optimization (PSO), which is called GSA-PSO. The operation of GSA-PSO...

متن کامل

SHAPE OPTIMIZATION OF CONCRETE GRAVITY DAMS CONSIDERING DAM–WATER–FOUNDATION INTERACTION AND NONLINEAR EFFECTS

This study focuses on the shape optimization of concrete gravity dams considering dam–water–foundation interaction and nonlinear effects subject to earthquake. The concrete gravity dam is considered as a two–dimensional structure involving the geometry and material nonlinearity effects. For the description of the nonlinear behavior of concrete material under earthquake loads, the Drucker–Prager...

متن کامل

Shape Optimization of Concrete Gravity Dams Considering Dam–water–foundation Interaction and Nonlinear Effects

This study focuses on the shape optimization of concrete gravity dams considering dam– water–foundation interaction and nonlinear effects subject to earthquake. The concrete gravity dam is considered as a two–dimensional structure involving the geometry and material nonlinearity effects. For the description of the nonlinear behavior of concrete material under earthquake loads, the Drucker–Prage...

متن کامل

RELIABILITY–BASED DESIGN OPTIMIZATION OF CONCRETE GRAVITY DAMS USING SUBSET SIMULATION

The paper deals with the reliability–based design optimization (RBDO) of concrete gravity dams subjected to earthquake load using subset simulation. The optimization problem is formulated such that the optimal shape of concrete gravity dam described by a number of variables is found by minimizing the total cost of concrete gravity dam for the given target reliability. In order to achieve this p...

متن کامل

MODELING OF FLOW NUMBER OF ASPHALT MIXTURES USING A MULTI–KERNEL BASED SUPPORT VECTOR MACHINE APPROACH

Flow number of asphalt–aggregate mixtures as an explanatory factor has been proposed in order to assess the rutting potential of asphalt mixtures. This study proposes a multiple–kernel based support vector machine (MK–SVM) approach for modeling of flow number of asphalt mixtures. The MK–SVM approach consists of weighted least squares–support vector machine (WLS–SVM) integrating two kernel funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012